CASCADIA WINDOWS & DOORS

.

PE

CASCADIAWINDOWS.COM

CASCADIA – EDUCATIONAL PRESENTATION

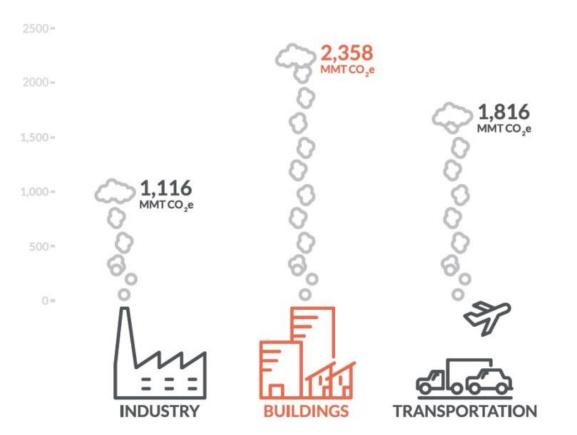
MIND THE GAP Better exterior wall performance through cladding attachments

AGENDA: WHAT ARE WE LOOKING AT TODAY?

- INTRO TO CASCADIA WINDOWS & DOORS
- UNDERSTANDING THE IMPACTS OF THERMAL BRIDGING
- PRESCRIPTIVE VS U-VALUES / PSI & CHI VALUES
- INSULATION APPROACHES
- UNDERSTANDING CLADDING ATTACHMENT OPTIONS
- DESIGN & PERFORMANCE CHARACTERISTICS OF DIFFERENT CLADDING ATTACHMENTS
- CASE STUDIES
- WRAP UP

THE PROBLEM WITH BUILDINGS

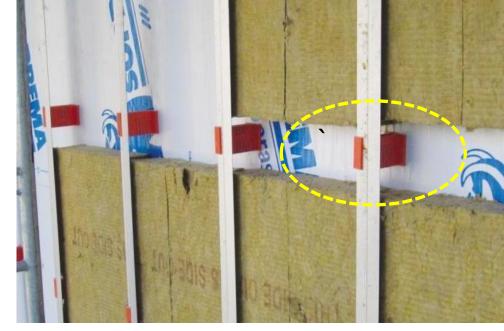
Understanding the impact of buildings on our energy grid and environment


A CONTRACT OF A

AND CALL FROM THE TANK AND AND T I AND CONTRACTOR AND TANK THE AND AND

留留留 要要"我

WHAT'S THE PROBLEM?



THE IMPORTANCE OF BUILDING SCIENCE

CLADDING ATTACHMENT MATTERS MOST

12" OF INSULATION

3.5" OF INSULATION

THINNER WALL HAS HIGHER EFFECTIVE R-VALUE

"Hey Duke, doesn't that fire feel good."

"Ouch! That poker's too hot to hold with my bare hands."

"I'll turn on the fan. All the warmest air is up near the ceiling."

HEAT FLOW – CONDUCTION

CONDUCTION

HEAT FLOW THROUGH SOLID OBJECTS CONDUCTIVITY

RATE OF CONDUCTIVE HEAT FLOW DEPENDS ON MATERIAL \Box

CONDUCTANCE (U-VALUE)

LAYER OR ASSEMBLY

Aluminum ~160 W/mK Steel ~60 W/mK Stainless Steel ~14 W/mK Fiberglass ~0.15 to 0.30 W/mK Wood ~0.10 to 0.15 W/mK Insulation Materials 0.022 to 0.080 W/mK

HEAT FLOW – U-VALUE AND R-VALUE

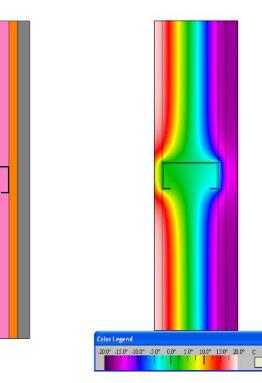
U-VALUE: CONDUCTANCE

HOW WELL HEAT MOVES THROUGH AN ASSEMBLY OR MATERIAL

> THE LOWER THE U-VALUE, THE BETTER THE ASSEMBLY

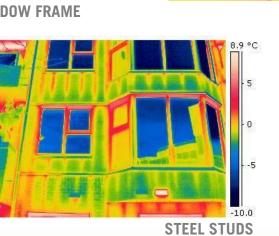
 $\frac{1}{R} = U$

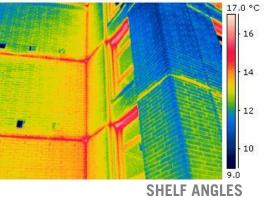
INVERSE OF U-VALUE


 $\frac{1}{R} = R$

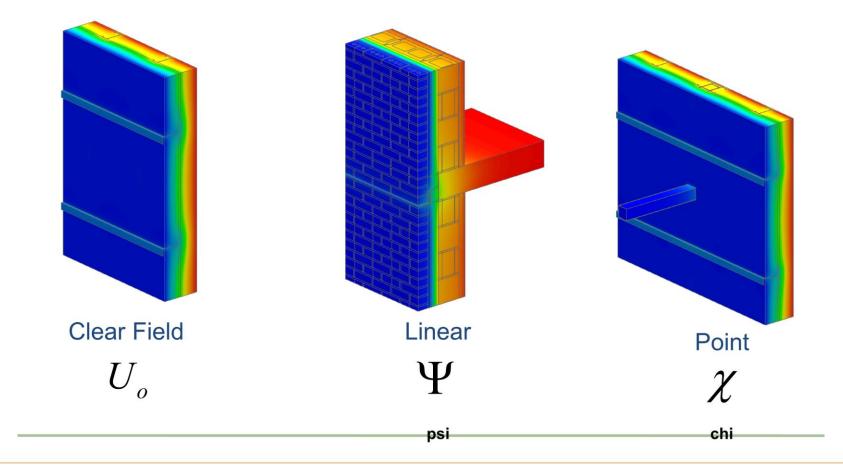
WHY ADDRESS THERMAL BRIDGING?

Understanding the impact of thermal bridging on a building's overall thermal performance


THERMAL BRIDGING

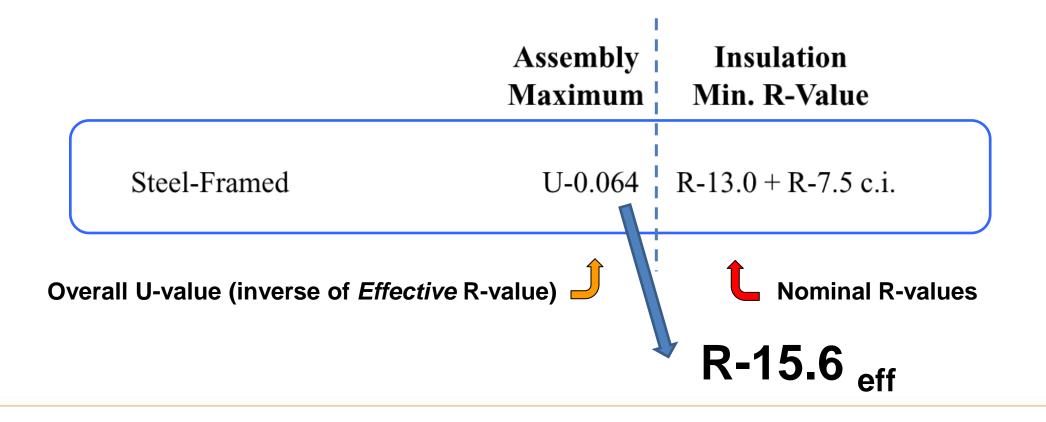


Close



WINDOW FRAME

DIFFERENT VALUES FOR DIFFERENT TYPES



Graphic credit to Morrison Hershfield Ripped screaming from the pages of a 2012 report, authored by Neil Norris, Patrick Ropell, Mark Lawton

DICTATING BETTER PERFORMANCE

MOST COMMON WALL TARGET

NEW CODES ARE DIFFERENT

PREVIOUS ENERGY CODES

NOW (BC ENERGY STEP CODE EXAMPLE)

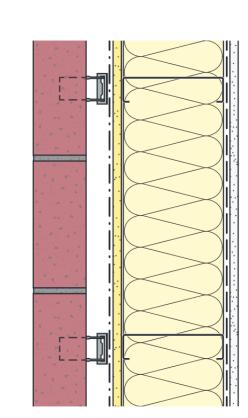
SEPARATE ASSEMBLY R-VALUES

ONE ENERGY USE LIMIT

NEW CODES ARE DIFFERENT

- Where have we already seen a whole-building outcome-based target work?
- Passive House
- It is impossible to develop enough prescriptive detail to account for all influential factors (e.g. thermal bridging), while also being simple enough to actually follow and achieve
- Designing for results
- Flexibility and responsibility

Passive House Institute US


WHY EXTERIOR INSULATION AND RAINSCREEN?

Gives us a chance to place insulation away from thermal-bridging of stud layer

INTERIOR INSULATION

INSULATION LAYER IN STUD CAVITY

MODERATE THERMAL PERFORMANCE (EFFICIENT IN WOOD FRAME / INEFFICIENT IN STEEL STUD)

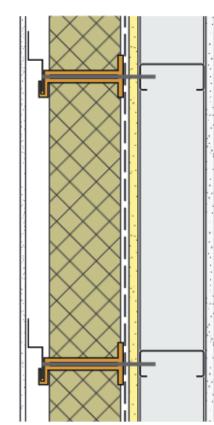
HIGHER RISK OF MOISTURE IN WALLS

SPLIT INSULATION

INSULATION LAYER IN STUD CAVITY + EXTERIOR OF SHEETING

THERMAL PERFORMANCE (BALANCING PERFORMANCE AND WALL THICKNESS)

MODERATE RISK OF MOISTURE IN WALLS


(DEPENDING ON CLIMATE ZONE & VAPOR/AIR BARRIERS)

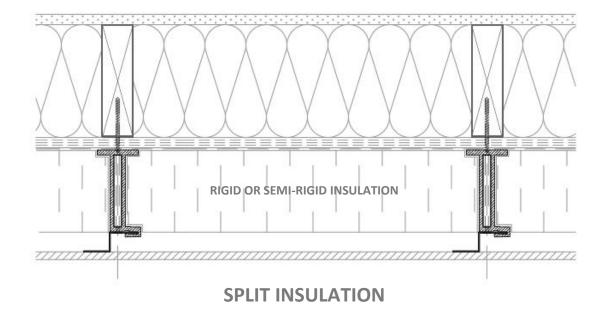
MORE COMPLEX DESIGN & INSTALL

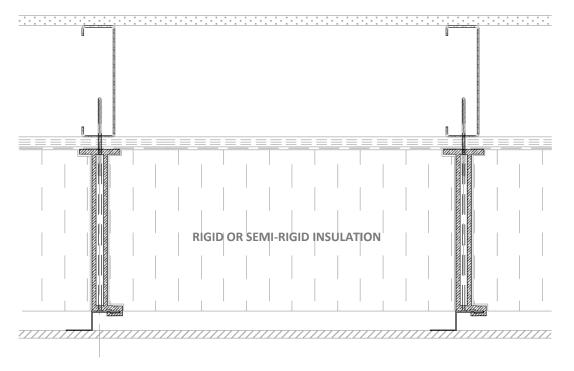
(MORE COMPONENTS, MORE CONSIDERATION TO LOCATION, PLACEMENT AND TYPE OF AIR AND VAPOR BARRIERS)

EXTERIOR INSULATION

INSULATION EXTERIOR OF SHEETING

HIGH THERMAL PERFORMANCE


(MOST EFFICIENT USE OF INSULATION)

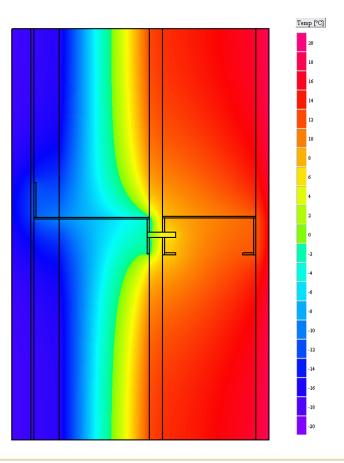

MINIMAL RISK OF MOISTURE IN WALLS

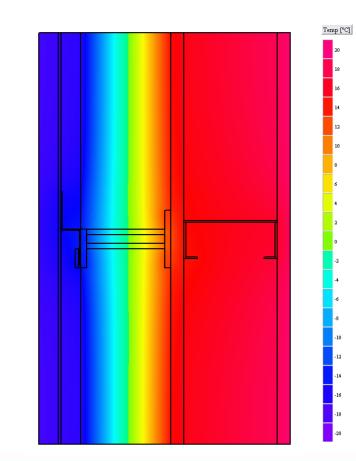
SIMPLE DESIGN & INSTALL

(LESS COMPONENTS, CAN COMBINE AIR AND VAPOR BARRIERS, WORKS IN ALL CLIMATE ZONES, MORE DURABLE)

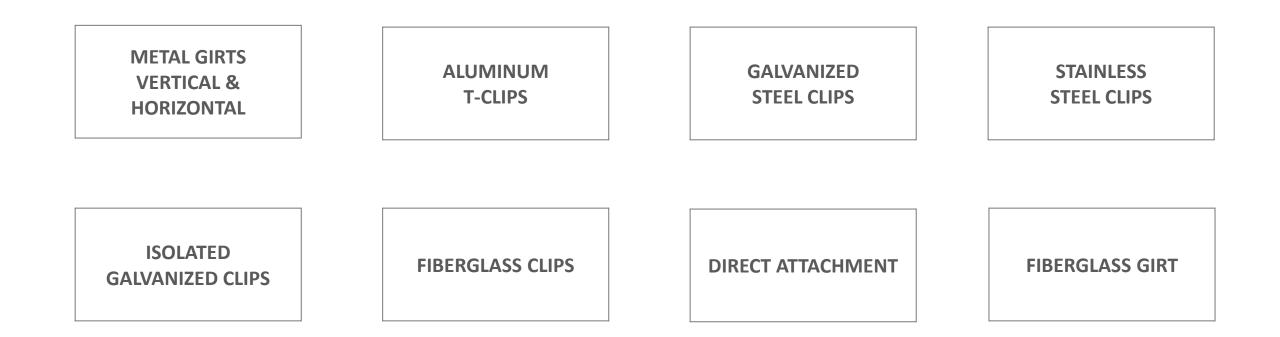
PASSIVE HOUSE ASSEMBLIES

EXTERIOR INSULATION

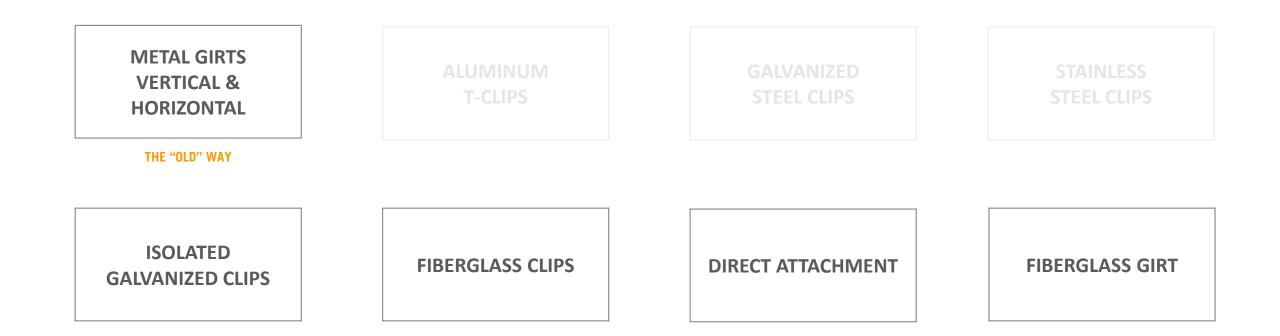

HOW CLADDING ATTACHMENT IMPACTS PERFORMANCE

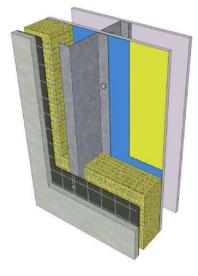

02 8

R

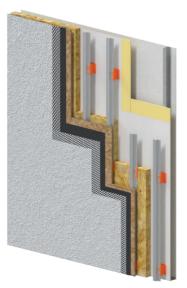

Thermally-improved cladding attachments are more important than insulation type

IMPACTS OF HOW YOU ATTACH




CLADDING ATTACHMENTS

CLADDING ATTACHMENTS

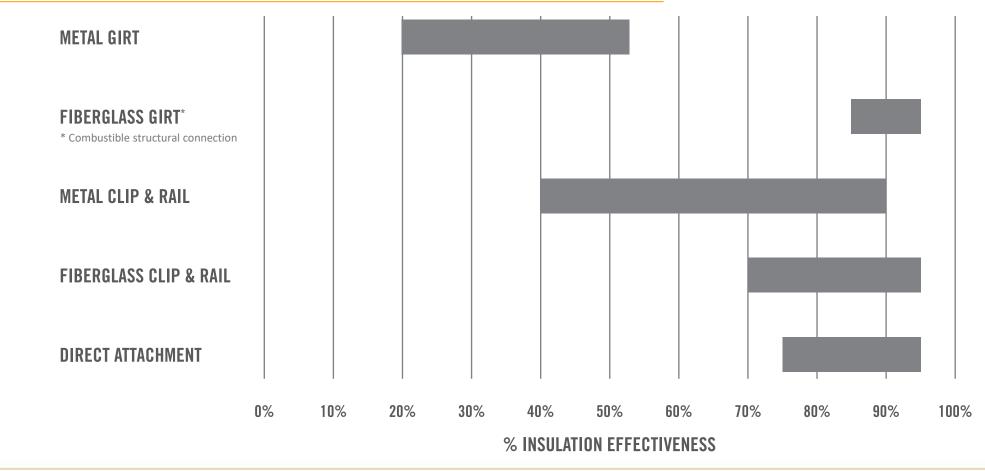

CLADDING ATTACHMENTS

METAL GIRTS VERTICAL & HORIZONTAL

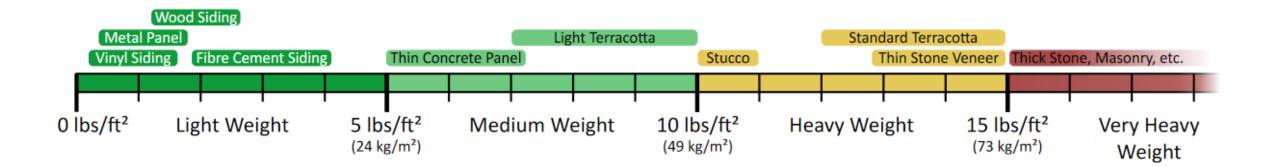
ISOLATED **GALVANIZED CLIPS**

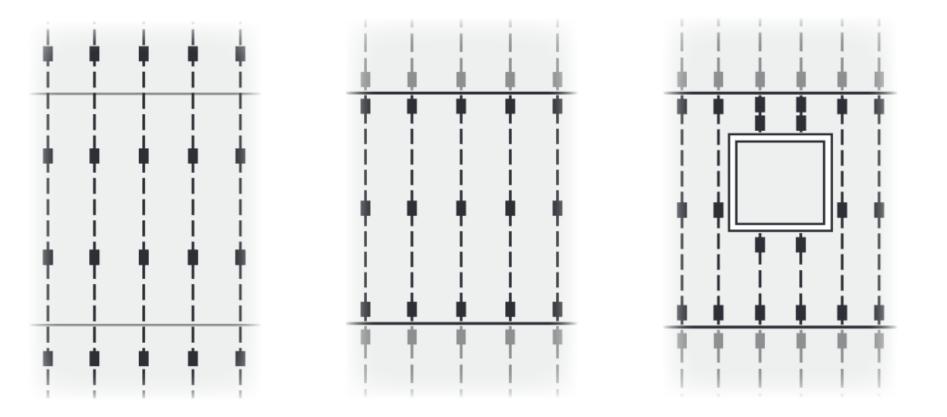
FIBERGLASS CLIPS GALVANIZED SCREWS

FIBERGLASS GIRT NO THROUGH SCREWS



DIRECT **ATTACHMENT** GALVANIZED STEEL SCREWS

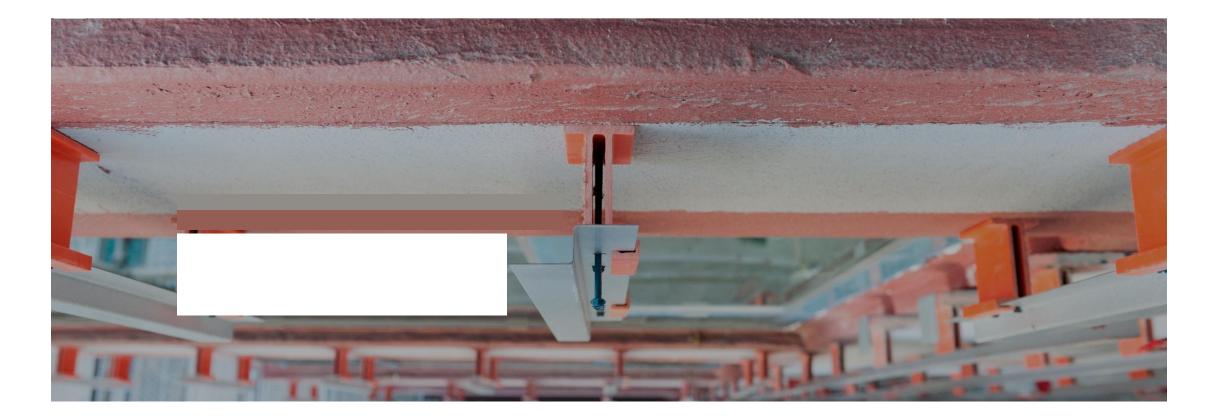

IMAGE COURTESY OF RDH BUILDING SCIENCE / ISO CLIP / CASCADIA WINDOWS & DOORS / ARMATHERM / KNIGHT WALL SYSTEMS


DEFINING PERFORMANCE – THERMAL

DEFINING PERFORMANCE - STRENGTH

DEFINING PERFORMANCE - COST

DEFINING PERFORMANCE - COST


FIBERGLASS - CLIP AND RAIL

STANDARD STEEL/STAINLESS STEEL - CLIP AND RAIL

DESIGN TOOLS

CLIP SPACING – WIND LOAD PERFORMANCE

Steel Stud/Concrete Wall Substructure - Up to 30 psf Specified Wind

	18 Ga. Steel Studs/Concrete		20 Ga. Steel Studs	
Cladding Weight (psf)	16" Horizontal Spacing	24" Horizontal Spacing	16" Horizontal Spacing	24" Horizontal Spacing
3	48	32	48	32
4	48	32	48	32
5	48	32	47	31
6	48	32	45	30
7	48	32	42	28
8	48	32	40	27
10	48	32	37	25
15	39	26	30	20

4" Wall Assembly - Vertical Clip Spacing (inches) - 2 attachment screws

Steel Stud/Concrete Wall Substructure - Up to 50 psf Specified Wind

6" Wall Assembly – Vertical Clip Spacing (inches) - 3 attachment screws

	18 Ga. Steel Studs/Concrete		20 Ga. Steel Studs	
Cladding Weight (psf)	16" Horizontal Spacing	24" Horizontal Spacing	16" Horizontal Spacing	24" Horizontal Spacing
3	48	32	45	30
4	48	32	42	28
5	48	32	39	26
6	47	32	36	24
7	44	30	34	23
8	42	28	32	21
10	38	25	29	19
15	27	18	23	15

CLIP SPACING – WIND LOAD PERFORMANCE

<u>IP</u> SI

Back up Wall St	ructure	3 5/8" Steel Stud - 18ga	a 🔻	FULL WALL EFF	ECTIVE THERMAL
Batts in Cavity?		Yes (R-13)	*	PERFORMANCI	E
Exterior Insulati	ion R-Value per Inch	R-4.3/inch	.	R-Value	30.4 [(ft ² •°F•hr)
Fastener Type		2 x Galvanized Steel	*	U-Value	0.033 [Btu/(ft2•°F
Clip Horizontal S	Spacing	16 in	•	WALL STRUCTL	JRAL CAPACITY
Cladding Dead L	_oad (Weight)	7 psf	•	Max. Wind Load	53.3 [psf]
Exterior Insulati	ion Depth / Clip Size	6 in	~		I
Clip Vertical Spa	acing	48 in	*		

Steel Stud/Concrete Wall Substructure - Up to 50 psf Specified Wind

6" Wall Assembly - Vertical Clip Spacing (inches) - 3 attachment screws

	18 Ga. Steel St	18 Ga. Steel Studs/Concrete		eel Studs
Cladding Weight (psf)	16" Horizontal Spacing	24" Horizontal Spacing	16" Horizontal Spacing	24" Horizontal Spacing
3	48	32	45	30
4	48	32	42	28
5	48	32	39	26
6	47	32	36	24
7	44	30	34	23
8	42	28	32	21
10	38	25	29	19
15	27	18	23	15

R VALUE AND MAX ALLOWABLE WIND LOADS

FIBERGLASS - CLIP AND RAIL

Back up Wall Structure	3 5/8" Steel Ste	ud - 18ga 🛛 👻			
Batts in Cavity?	No	•			
Exterior Insulation R-Value per Inch	R-4.3/inch	•			
Fastener Type	2 x Galvanized	Steel 👻			
Clip Horizontal Spacing	16 in				
Cladding Dead Load (Weight)	3 psf		LL EFFEC	TIVE TH	IERMAL
Exterior Insulation Depth / Clip Size	4 in	PERFOR	MANCE		
Clip Vertical Spacing	48 in	R-Value		17.9	[(ft²•°F•hr)/Btu]
		U-Value	0	.056	[Btu/(ft²•°F•hr)]
		WALL STRUCTURAL CAPACITY		CITY	
		Max. Wind I	.oad	75.8	[psf]

STANDARD STEEL/STAINLESS STEEL - CLIP AND RAIL

Your results

IP SI

The results below are intended to provide estimated specified wind load and thermal performance, and is for advice and guidance based on the National Building Code of Canada, and must be verified by a licenced engineer of record in the province or state where the product is to be installed. Analysis of the bracket, girt and mechanical attachments was conducted by Morrison Hershfield.

Your chosen horizontal spacing	16 in	
Your chosen vertical spacing	24 in	
Maximum specified wind load	47 psf	
Maximum possible effective R-value	R-16	
Governing component	bracket-to-substrate connection	
Clip count (per unit area)	0.375 per ft ²	l wind load and thermal performance, g Code of Canada, and must be verified
Suggested subgirt dimensions	2 ½ × 2"	e the product is to be installed. Analysis ed by Morrison Hershfield.
	Your chosen horizontal spacing	16 in
	Your chosen vertical spacing	48 in
	Maximum specified wind load	22 psf
	Maximum possible effective R-value	R-18
	Governing component	bracket-to-substrate connection
	Clip count (per unit area)	0.188 per ft ²
	Suggested subgirt dimensions	2 ½ × 2"

R VELUE AND MAX ALLOWABLE WIND LOADS

FIBERGLASS - CLIP AND RAIL

Cladding Area (ft ²)	2,187
Cladding Type (optional)	TBD
Cladding Weight (psf) (optional)	3.0
Sub-Furring Required	Z-Girt (Vertical/Continuous)
Clip Size (in)	4
Horizontal Space (in)	16
Vertical Spacing (in)	48

Contingency (Estimate)

Contingency percentage accounts for openings, corners and tighter clip spacing a joints in sub-furring that may require additional materials.

Clips (including 2 fasteners / clip)	10%
Z-Girt - Linear Feet	10%

QUANTITY CALCULATIONS

	UNITS
Clips (#)	453
Z-Girt - Linear Feet	1,810

	1,810
	4.83

STANDARD STEEL/STAINLESS STEEL - CLIP AND RAIL

Specify a wall width and height below to calculate the number of horizontal and vertical ranks of clips required, as well as the total number of clips required.

	10	03	÷	ĉĉ	ĉ		÷		Ĵ	ĉ,	ĉ	Ĉ,		ĉ		ĉ	6	1	àĉ	rc	ŝŝ	ŝ			ĉ,	ĉ	ĉ	ĉ	Ĉ.	ĉ		Ĵ	<u>.</u>	ĉ	Ĉ,	ŝ	Ĉ,		1
× × >	÷.	25	. ×		X		×.	2 3	2	23		23	. ×	×	xx	×	××	x	××	×	(x	χ,	x	××	25			x	χ,	2	××	÷	××	×	Ξ,		23	xx	
×	< ×	×>	(x)	××	×	××	× *	×	: ×	×	< ×	×	< ×	×	××	×	××	(x)	××	×	< ×	× >	×	××	×>	×	××	×	××	×	××	×	××	×	×>	: ×	×	××	2
×۲	< ×	×>	(×)	××	×	××	×	××	(×	×	×	×	××	×	××	×	××	(X)	××	×	< ×	×>	×	××	×>	×	××	×	××	×	××	×	××	×	×>	×	×	××	2
N.	×	×	×	××	×	××	(×)	××	×	×	×	×	××	×	××	×	××	x	××	×	××	×	×	××	×	×	××	×	××	×	××	×	××	×	×>	×	×	××	2
ĝ	×	×	×	××	×	××	×	××	×	×	×	×	××	×	××	×	8!	54	Ē	ò	ta	P	(X)	××	×	×	××	×	××	×	××	×	××	×	×>	×	×	××	.>
4	C X	~ ~	×	××	×	××	×	××	: ×	~ ?	< ×	× 3	< ×	×	××	×	~^		8 X	×.		~ ?	(X	××	~ ~	×	××	×	~ >	× ×	××	×	××	×	× >	< ×	× 3	××	2
4		22	(X)	<u>~</u> ~	Č.	× ×		23	10	23		Č.	20	Č	22	Č	22		× ×	23		22	(X)	× ×	22		22	. č	22		22	Č	× ×	÷.	22	 	Č.	× ×	2
000	22	23	2	22	0	ÛÛ	0	23	10	23	22	23	20	Q.,	22	Q.	22	2	22	23	20	23	20	ŶŶ	23	22	20	0	23	2	22	0	ŶŶ	0	23	22	23	22	
× × >	<×	× >	×	××	×	××	×	× 7	έx.	× 3	. ×	×	< ×	×	××	×	××	x	××	x	××	× ,	×	××	× >	. ×	××	×	× >	×	××	×	××	×	× >	. ×	×	××	5
< x >	< ×	×>	(×)	××	×	××	× •	××	z x	×	(×	x	< x	×	××	×	××	: × :	××	×	< ×	×)	 x 	××	×>	(x	××	×	××	: ×	××	×	××	×	×>	: ×	×	××	
~ ~ ~	~~	~ >	~~	<u>~ ~</u>	¥ 1	~ ~	~	<u>× </u>	, <u>v</u>	~ .	<u> </u>	~ .	<u>.</u>	~		~																					ψ.		

Your results

The results below are intended to provide estimated specified wind load and thermal performance, and is for advice and guidance based on the National Building Code of Canada, and must be verified by a licenced engineer of record in the province or state where the product is to be installed. Analysis of the bracket, girt and mechanical attachments was conducted by Morrison Hershfield.

Your chosen horizontal spacing	1 6 in
Your chosen vertical spacing	24in
Maximum specified wind load 47	7 psf
Maximum possible effective R-value	-16
Governing component bracket-to-substrate connect	ction
Clip count (per unit area) 0.375 pe	er ft²
Suggested subgirt dimensions 2 1/2	× 2"

PERFORMANCE IS A MATRIX

_	RELATIVE COST	THERMAL EFFICIENCY	CONSTRUCTABILITY	COMBUSTIBILITY	STRENGTH
METAL GIRT	\$\$\$	20-50%	\mathcal{M}	666	
FIBERGLASS GIRT * * Combustible structural connection	\$\$\$	85-95%	$\mathcal{N}\mathcal{N}$		
METAL CLIP & RAIL	\$\$ \$	40-90%	$\gamma\gamma\gamma$		
FIBERGLASS CLIP & RAIL	\$\$\$	70-95%	$\gamma\gamma\gamma$		
DIRECT ATTACHMENT	\$\$\$	75-95%	$\rightarrow \rightarrow \rightarrow$		

DEFINING PERFORMANCE

Cladding Attachment Comparison

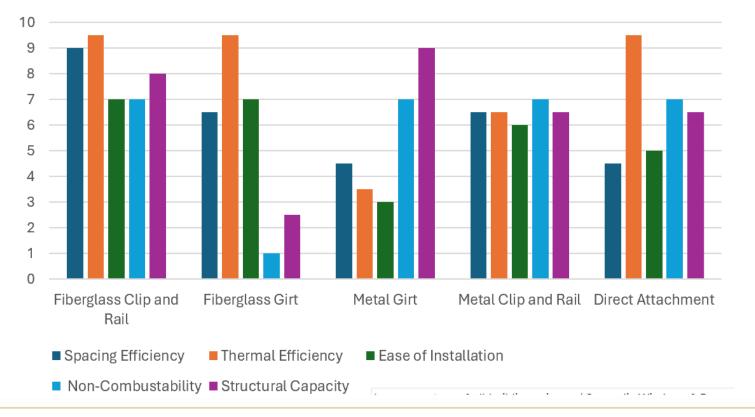


IMAGE COURTESY OF RDH BUILDING SCIENCE / CASCADIA WINDOWS & DOORS

FIRE PROTECTION – CLADDING BIG PICTURE

TO AVOID THIS...

ANALYSIS AND TESTING – FIRE PERFORMANCE

ENGINEERING ANALYSIS – FIRE PERFORMANCE:

Spacer is acceptable for use in:

- A WALL REQUIRED TO BE BUILT OF NON-COMBUSTIBLE CONSTRUCTION
- INCLUDING PERMITTED COMBUSTIBLE CLADDINGS (METAL COMPOSITE MATERIALS)
- ALSO, IN COMBUSTIBLE CONSTRUCTION (OBVIOUSLY)

Maintains the two code (and common sense) objectives, which are:

- 1. CANNOT ALTER INTENDED FIRE PERFORMANCE OF NON-COMBUSTIBLE WALL
- 2. CLADDING MUST STAY-IN-PLACE EVEN IF THE COMPONENT IS DAMAGED

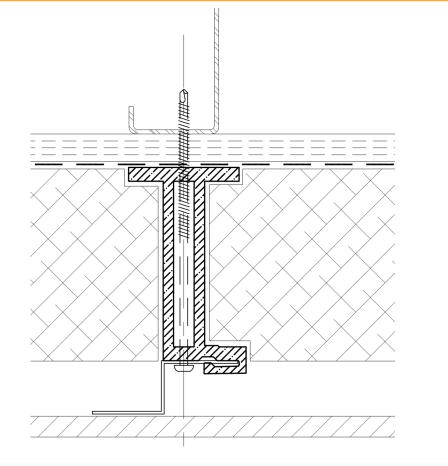
No.1 is clear by analysis, and can be further supported by testing

No.2 is clear by observation—direct fastening

CANADIAN CODE EVALUATION

B.R. Thorson Consulting Ltd. Consulting Structural Engineer • Building Code Consultant 769 Roslyn Blvd, North Vancouver, B.C. V7G 1P4 Tel. 604-929-8520 Fax 604-929-8530 Cell 604-290-6569

WORKS WITH ANY CLADDING TYPE



MINOR COMBUSTIBLE COMPONENT

Building Code Appeal Board

c/o Building and Safety Standards Branch PO Box 9844 Stn Prov Govt Victoria BC V8W 9T2

NON-COMBUSTIBLE CONNECTION

CODE COMPLIANCE: IAPMO-UES REPORT

THIRD PARTY CERTIFICATION OF THE CASCADIA CLIP

APPROVES CLIP FOR USE IN IBC TYPES I, II, III, IV, AND V CONSTRUCTION

ICC-ES EQUIVALENT

LOOKS AT SEVERAL DIFFERENT ASPECTS OF DESIGN

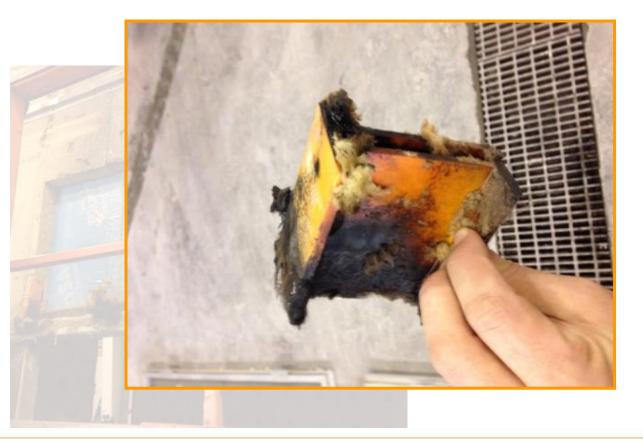
ONLY CLIP SYSTEM WITH A NATIONALLY RECOGNIZED THIRD PARTY CODE COMPLIANCE REPORT

NFPA 285 TEST FIRE PROPAGATION IN EXTERIOR WALL FULL-ASSEMBLY TEST

FIRE PERFORMANCE - TESTING

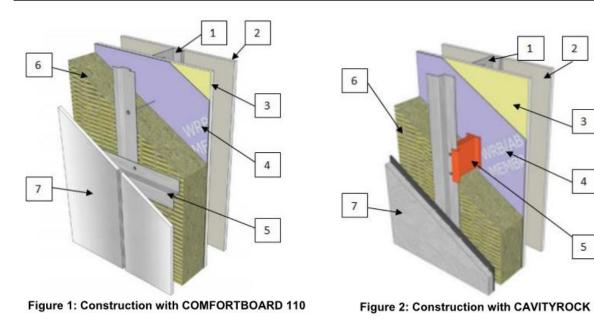
FIRE PERFORMANCE – NFPA 285 RESULTS

SOLID PASS WITH MCM PANELS



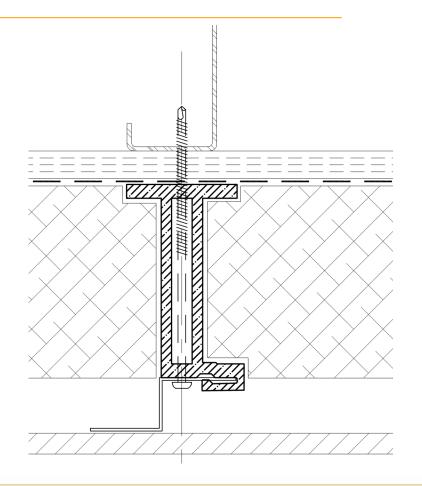
FIRE PERFORMANCE – NFPA 285 RESULTS

SOLID PASS WITH MCM PANELS


FOR <u>FIRE</u> PERFORMANCE

CONCLUSION: THE CLIP DOES... NOTHING AND THEREFORE CHANGES NOTHING.

INTERTEK LISTING WITH ROXUL

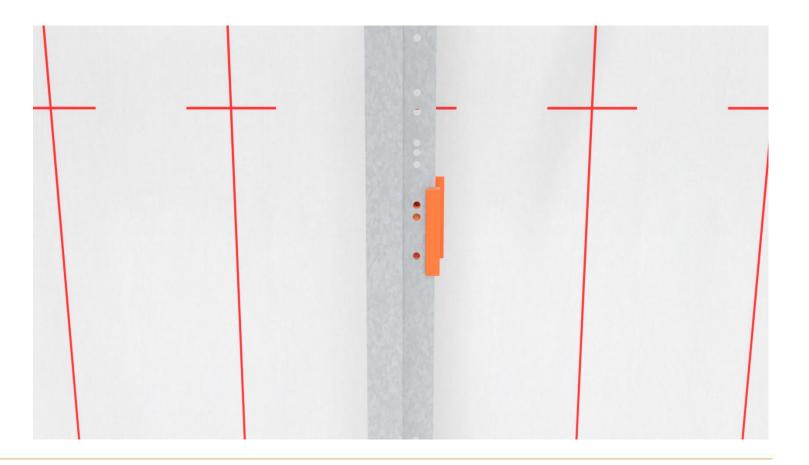

ROXUL Inc. Design No. RI/MFF 30-01 Mineral Wool Insulation CAVITYROCK and COMFORTBOARD 110 NFPA 285 – Meets Conditions of Acceptance

Valued Quality. Delivered.

A LENS TO JUDGE

TYPICAL INSTALLATION PRACTICES

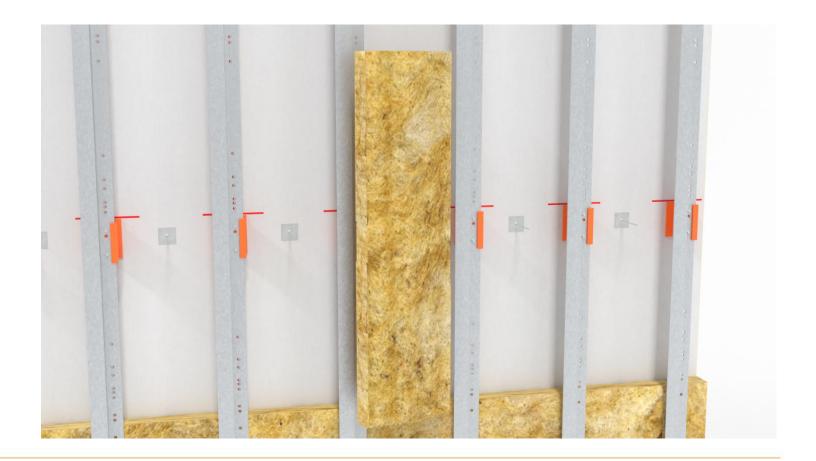
Maximizing efficiency to streamline installation


VERTICAL CLIP & RAIL

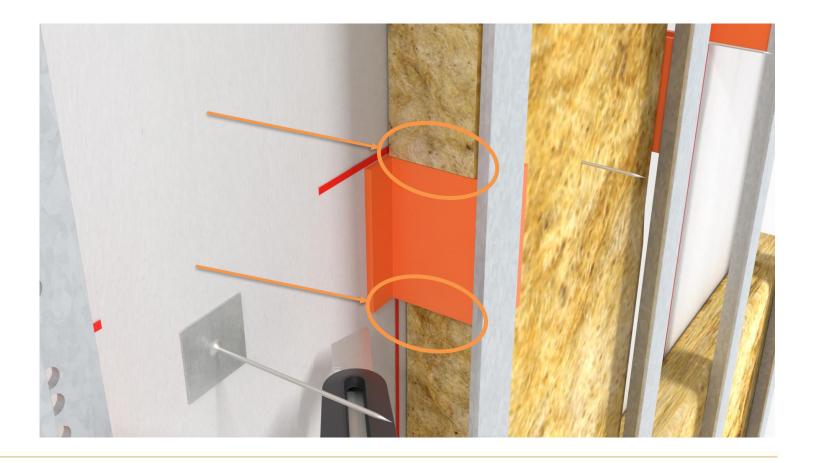
1. Mark spacing on backup wall

VERTICAL CLIP & RAIL

2. Snap clips to pre-punched z-girts


VERTICAL CLIP & RAIL

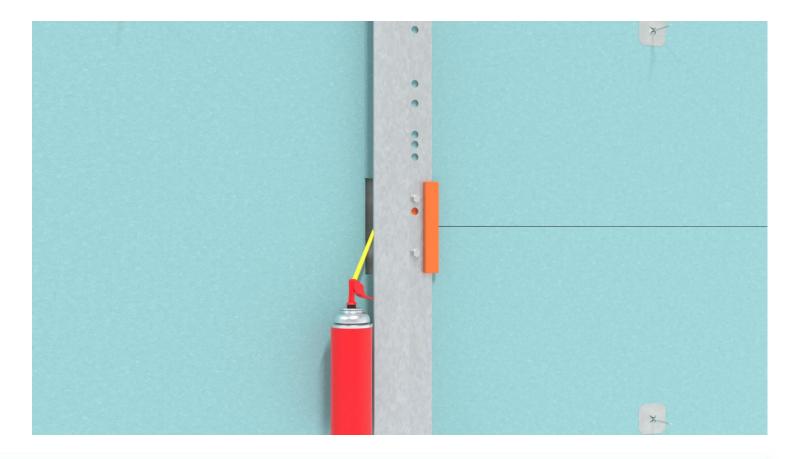
3. Secure clips to backup wall


VERTICAL CLIP & RAIL

4. Install insulation

VERTICAL CLIP & RAIL

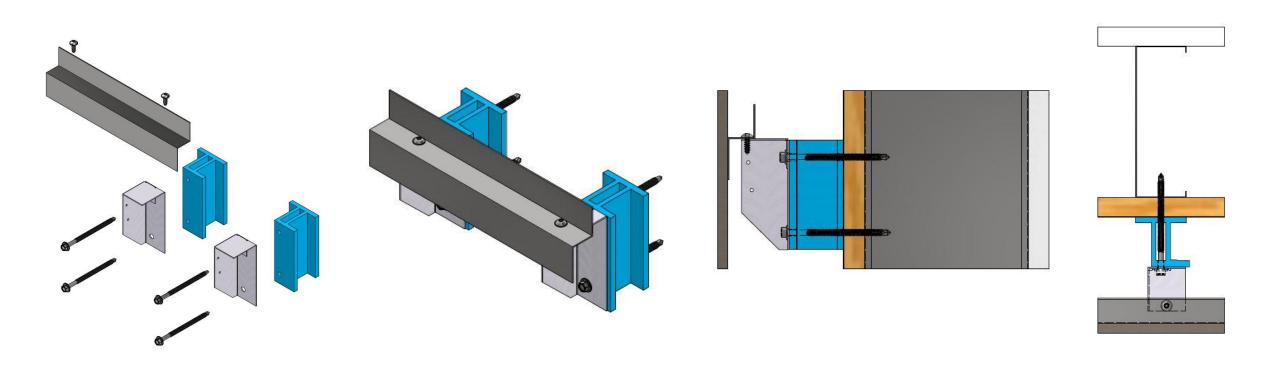
4. Install insulation


VERTICAL CLIP & RAIL

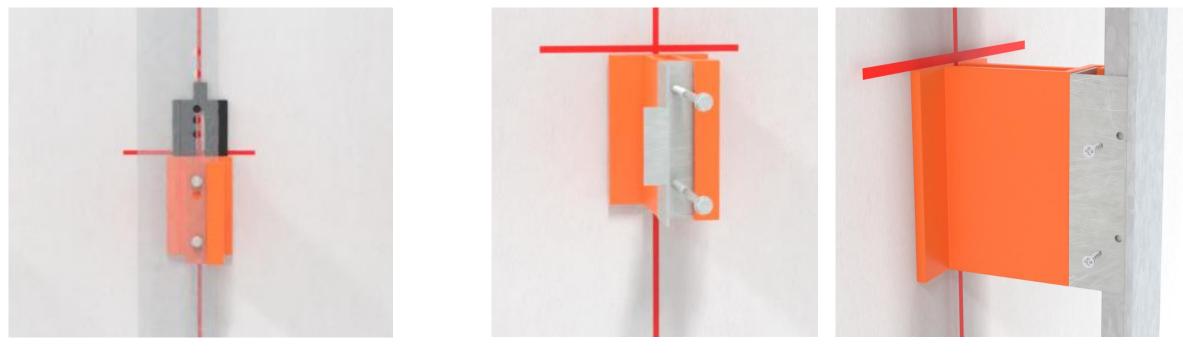
4. Install insulation (Rigid Insulation)

VERTICAL CLIP & RAIL

4. Install insulation (Rigid Insulation)


VERTICAL CLIP & RAIL

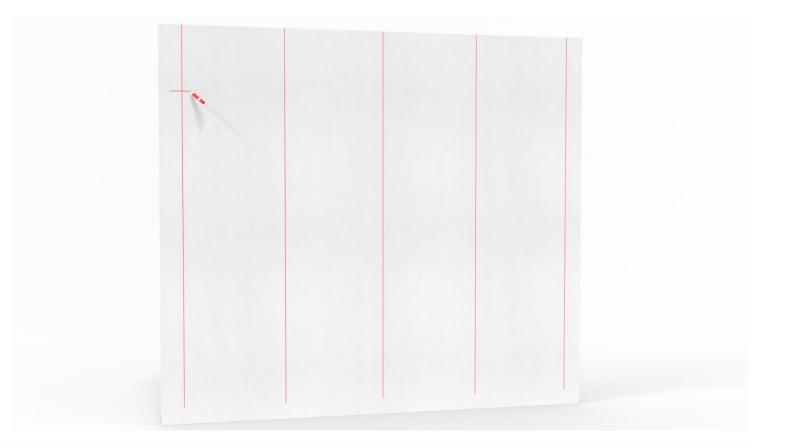
5. Install cladding


INSTALLATION STEPS - ADJUSTABILITY

HORIZONTAL + VERTICAL CLIP & RAIL

INSTALLATION STEPS - ADJUSTABILITY

VERTICAL CLIP & RAIL

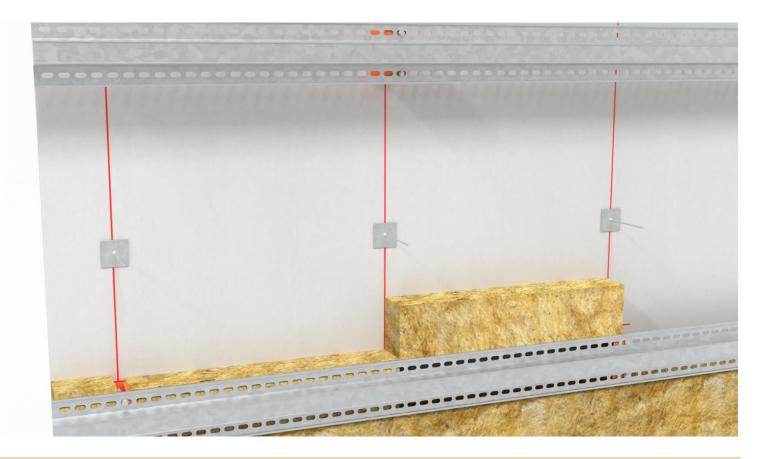


Adjustability Bracket

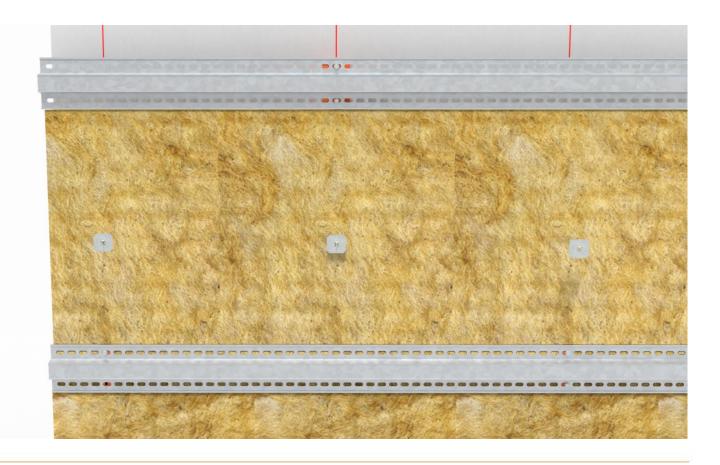
Shims

HORIZONTAL CLIP & RAIL

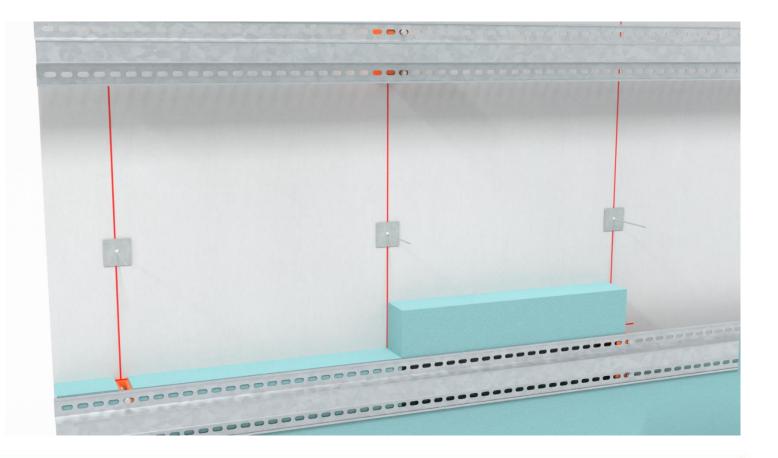
1. Mark spacing on backup wall


HORIZONTAL CLIP & RAIL

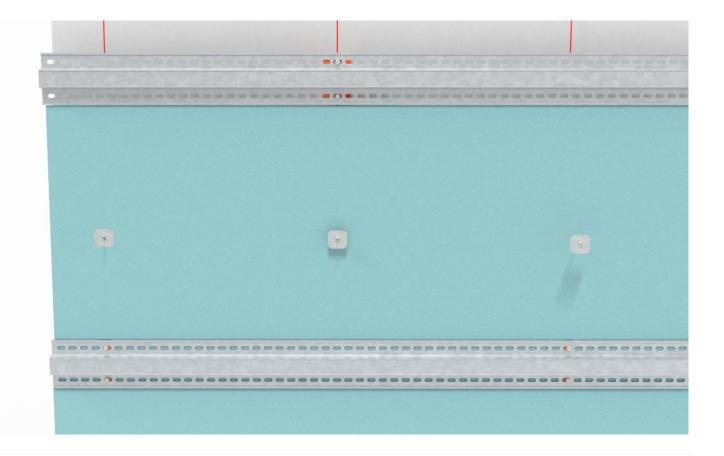
2. Secure clips to backup wall


HORIZONTAL CLIP & RAIL

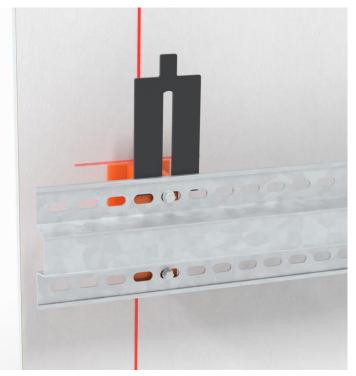
3. Install insulation


HORIZONTAL CLIP & RAIL

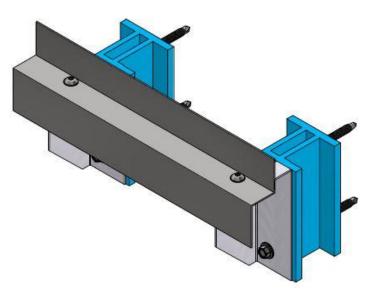
3. Install insulation


HORIZONTAL CLIP & RAIL

3. Install insulation (Rigid Foam)


HORIZONTAL CLIP & RAIL

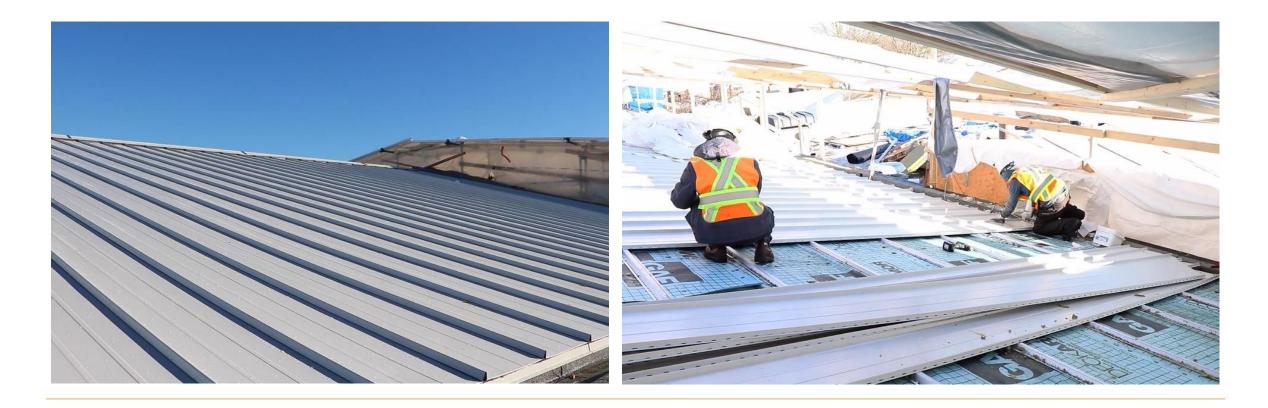
3. Install insulation (Rigid Foam)



INSTALLATION STEPS - ADJUSTABILITY

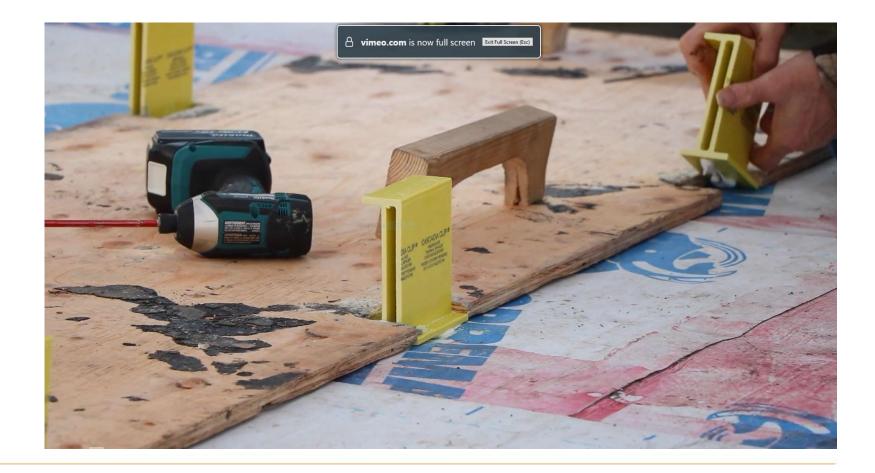
HORIZONTAL CLIP & RAIL

Shims


Adjustability Brackets

HORIZONTAL CLIP & RAIL

4. Install cladding



LOW SLOPED ROOF CLIP & RAIL

LOW SLOPED ROOF CLIP & RAIL

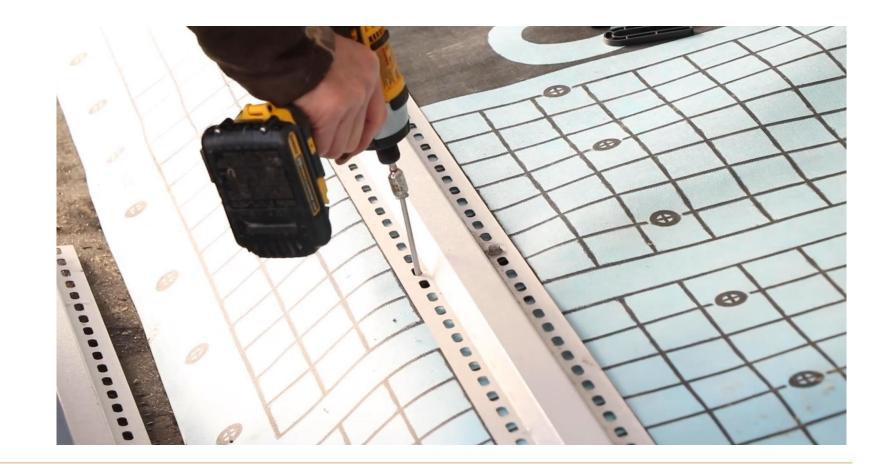
1. Use a simple jig to align and space clips.

LOW SLOPED ROOF CLIP & RAIL

2. Pre-fasten the clips to the decking. Apply sealant.

LOW SLOPED ROOF CLIP & RAIL

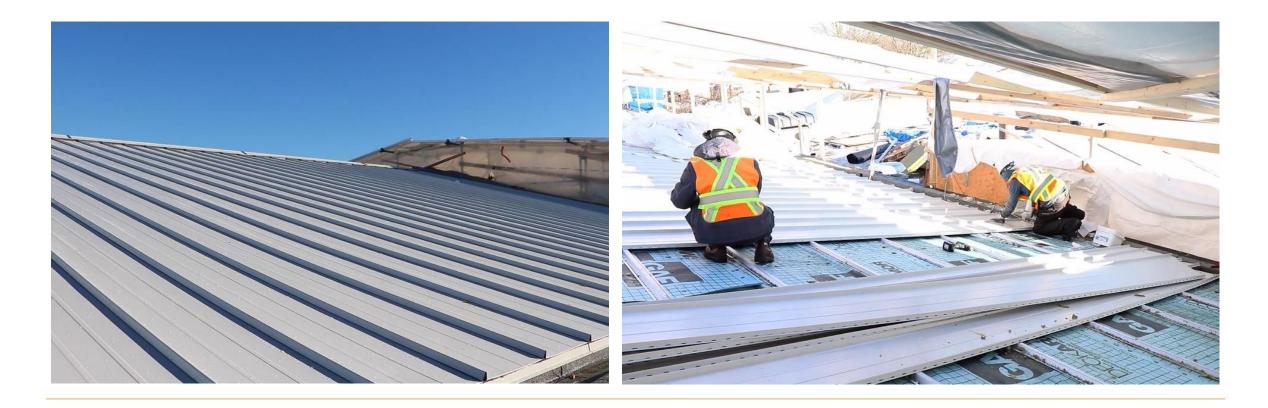
3. Install insulation.


LOW SLOPED ROOF CLIP & RAIL

4. Install water-resistant membrane.

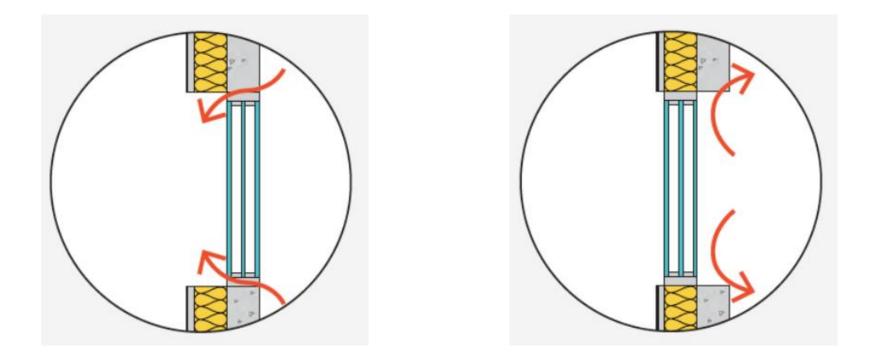
LOW SLOPED ROOF CLIP & RAIL

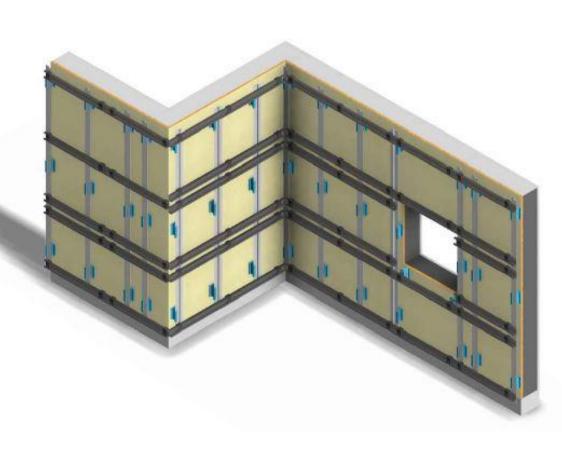
5. Install hattrack.



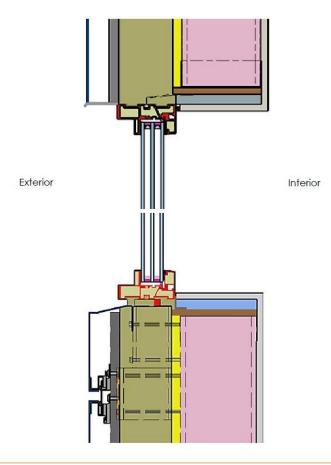
LOW SLOPED ROOF CLIP & RAIL

6. Install roofing.


LOW SLOPED ROOF CLIP & RAIL

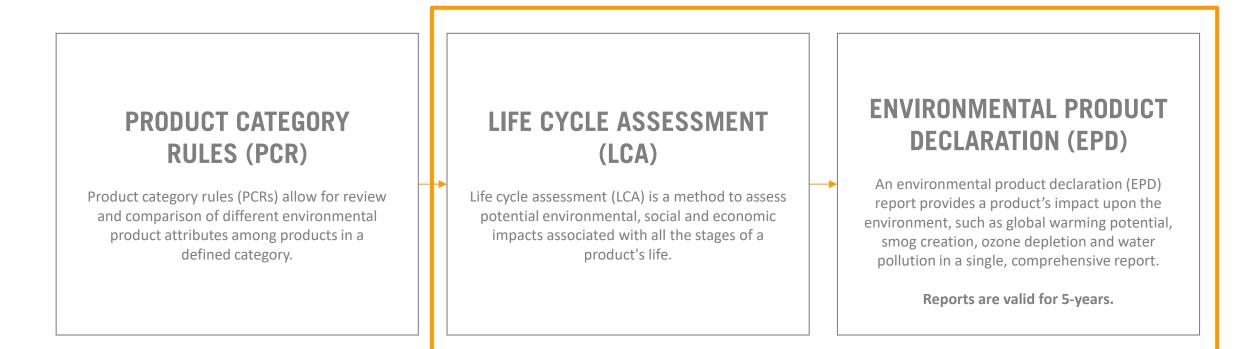

HIGH-PERFORMANCE INSTALLATION PRACTICES

Emerging installation practices streamlining openings & corners



WINDOWS INSTALLED IN LINE WITH THE INSULATION LAYER

IMPROVES THERMAL PERFORMANCE OF ENTIRE WALL ASSEMBLY (WINDOWS ARE OFTEN THE WEAKEST LINK)


USES EXISTING PRODUCTS, JUST IN A NOVEL APPLICATION (REDUCES DETAILING AND INSTALLATION COMPLEXITY)

CARBON & LIFECYCLE IMPACTS

Understanding the environmental impacts of assembly components

WHAT IS AN EPD?

NEW PCR FOR CLADDING SUPPORTS

Sustainable Minds Transparency Report™ / EPD Framework

Part B: Product group definition | Cladding Support Components and Systems

Initiated by	Rainscreen Association in North America (RAiNA) jxec@rainscreenassociation.org https://rainscreenassociation.org/	
Other company(s) and organization(s) involved	Members of RAiNA: Cascadia Windows & Doors Knight Wall Systems CLADIATOR Hohmann & Barnard Northern Facades Limited	

Product group

Name	Cladding Support Components and Systems	CSI MasterFormat [®] #(s)	07 05 43 Cladding Support System 07 48 00 Rainscreens
Description Define the types of products included under this Part B	Components or systems that provide support of exterior cladding and may also limit thermal transfer through the building envelope. Note: This PCR does not cover masonry ties.		
New Part B request? Yes / No	Yes	Is this an update to an existing Part B? Yes / No	No
Validity period	10/31/2022 – 10/30/2027		

NEW PCR – PART B PUBLISHED IN OCT 2022

NEW PCR IS VALID TO OCT 2027

MOST ACCURATE DATA AVAILABLE FOR PRODUCTS

CLADDING SUPPORT EPDS

Sustainable Minds CASCADIA

Catalog + Cascadia Windows + Cascadia Clip®

PERFORMANCE DASHBOARD
 O LCA & MATERIAL RESULTS & INTERPRETATION
 O HOW WE MAKE IT GRE

Dow

Performance dashboard

Features & functionality	Environment & materials		
Available in 8 different sizes	Improved by:		
Carrying a comprehensive IAPMO-UES code evaluation	Living Building Challenge Declare Red List Approved		
Fully adjustable and compatible with vertical and horizontal cladding supports	Made from non-organic, chemically inert pultruded fiberglass, the clip is not susceptible to corrosion, rot, decay, mildew, insect damage		
Free online spacing calculator available to optimize spacing and performance	Used in successful NFPA 285 testing		
Pre-punched Galvalume" AZM 150 (AZ-50) - 18	Designed & manufactured in North America		
gauge z-girts and hat channel available	Modelled service life of 200 years		

LCA results & interpretation

LCA results & interpretation

Scope and summary

♥ Cradle to gate ○ Cradle to gate with options ○ Cradle to grave

Application

The Cascadia Clip® fiberglass thermal spacer is a thermally-improved cladding support product created by combining glass fibers and catalyzed polyester resin in the pultrusion process. The product creates a thermal break separating the building structure from the exterior cladding support framing and is available in eight different sizes to accommodate insulation thicknesses.

What's causing the greatest impacts

All life cycle stages

Activities during the supply of raw materials (A1) are responsible for much of the impacts in each impact category. The next highest impact contributor is transportation (A2) in most of the impact categories. Manufacturing (A3) accounts for a notable impact only in the ozone depletion and global warming Impact categories.

Raw materials acquisition

This stage (A1) dominated the results for all impact categories. This module Includes the raw materials acquired and preprocessed by the suppliars

HOW TO USE

SCHEMATIC DESIGN PERFORMANCE DOCUMENTS

Based on client objectives, request EPDs from potential manufacturers/suppliers as part of standard performance documents.

DESIGN DEVELOPMENT LIFECYCLE ASSESSMENTS

Utilize EPD data to help determine holistic impact of material selections and adjust product specs to meet carbon goals and project objectives.

ASSESSING ALTERNATIVES

When considering off-spec product alternatives, compare EPD data to confirm product's carbon impacts on project objectives.

THERMAL BRIDGING IN THE REAL-WORLD

Project examples of high-performance thermal bridging

BELMONT VILLAGE

- Long Island NY (2024)
- Project Team
 - Engineer RICE Engineering
 - Contractor Aurora GC
 - Installer Certified Interiors

EASE OF INSTALLATION

- Compatible with all Insulation types
- Compatible with all Façade panels
- Customized installation per wall Adjustability
- Customized Pre-Installation options Full Girt Solution
- Pre-assemble in House or Manufacturer

ROD & REEL RESORT

- Raleigh, North Carolina (2024)
- Project Team
 - Consultant Spec One Systems
 - Installer Alliance Exteriors

ROD & REEL

EASE OF INSTALLATION

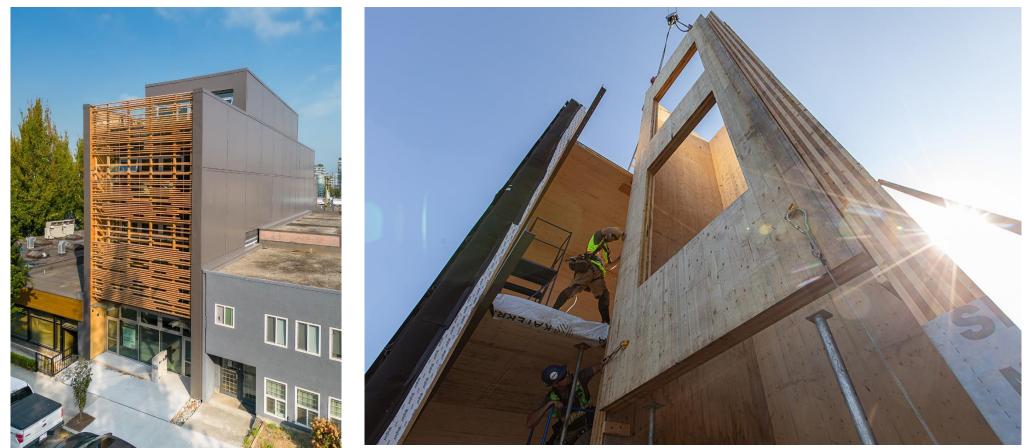
- Sequencing flexibility
- Compatible with all Façade panels
- Customized installation per wall w adjustability options
- Customized adjustability HZ and VT

RESIDENTIAL / WOOD STRAPPING

- Clips for Wood Strapping on residential buildings
- Provides a path to hit the studs
- Provides a rigid sub structure for strapping and cladding attachment
- Allows for nail based cladding installation

1620 MAIN ST E

- Hamilton ON (2024)
- Rapid Housing/Passive House
- 42 Unit affordable housing
- Project Team
 - Architect McCallum Sather
 - Developer CityHousing Hamilton
 - Engineer RDH Building Science
 - Contractor Westmount Systems



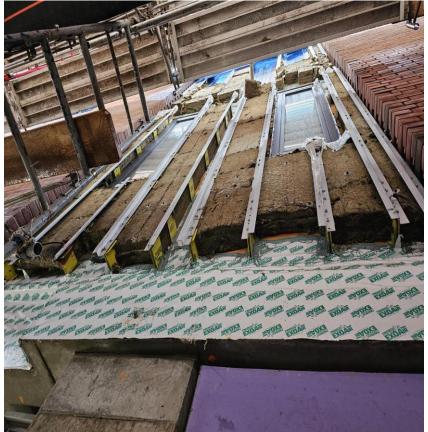
ON5

- Vancouver, BC (2022)
- High-performance, pre-fab CTL
- Project Team
 - Architect Hemsworth Architecture
 - Structural Equilibrium Consulting Inc. & Timber Engineering
 - Contractor Naikoon Construction

FRANCES STREET

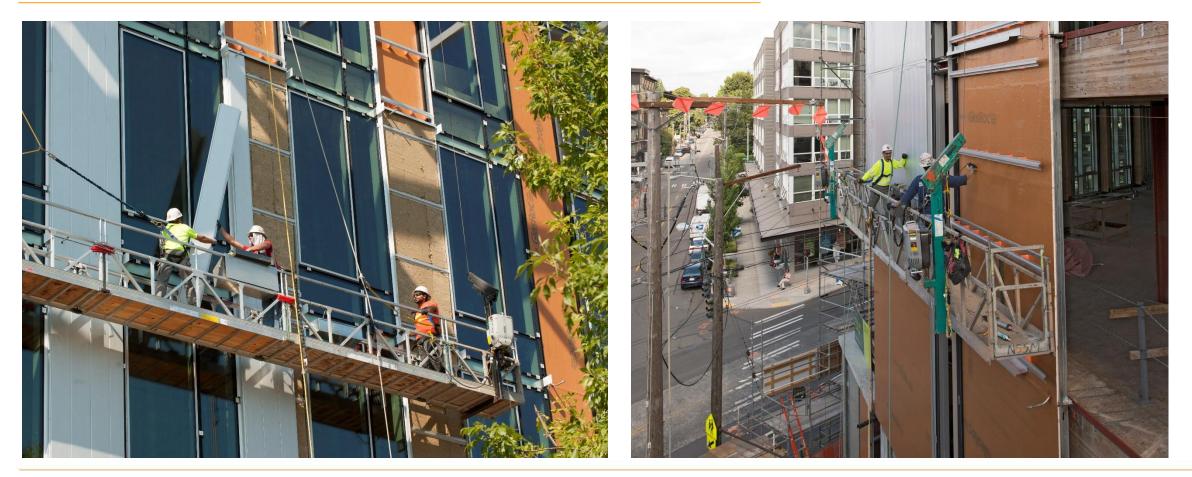
- Vancouver, BC (2025)
- High-performance, pre-fab CTL
- Project Team
 - Architect GBL
 - Structural Seagate Mass Timber
 - Contractor Intelligent City & Ventana Construction
 - Installer- Maison Exteriors


FRANCES STREET



PREFAB- 147 ST. FELIX ST NY

- Bronx, NY (2025)
- High-performance, pre-fab CTL
- Project Team
 - Prefab Contractor Assebmly OSM

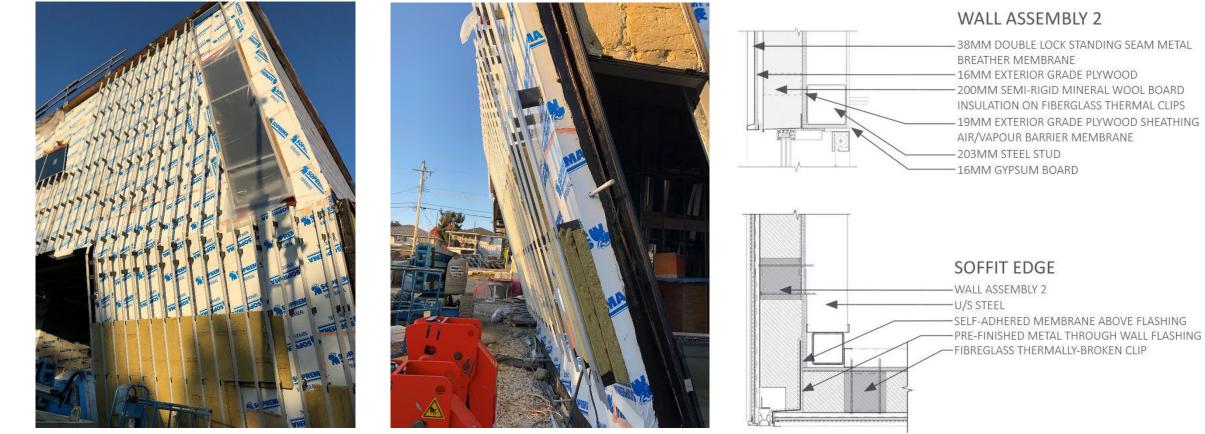


BULLITT CENTER

- Seattle, WA (2013)
- Living Building Certified
- Project Team
 - Architect Miller Hull
 - Developer Point 32
 - Engineer PAE Engineers
 - Structural Engineer DCI Engineers
 - Contractor Schuchart

BULLITT CENTER

BULLITT CENTER



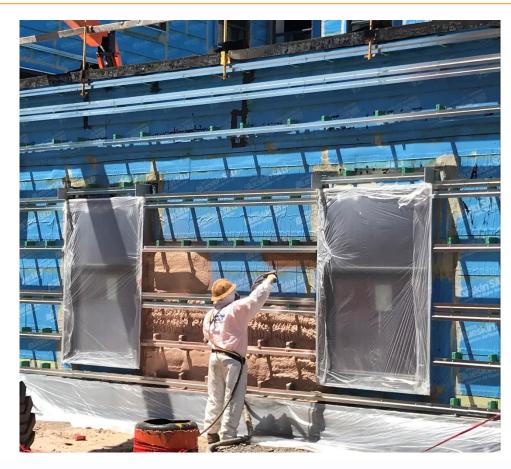
FIRE HALL 17 - VANCOUVER

- Vancouver, BC (est. 2022)
- Passive House Certified (pending)
- Project Team
 - Architect HCMA
 - Owner City of Vancouver
 - Structural Engineer RJC Engineers
 - Construction Management DGS Construction
 - Energy Modelling Morrison Hershfield

FIRE HALL 17 - VANCOUVER

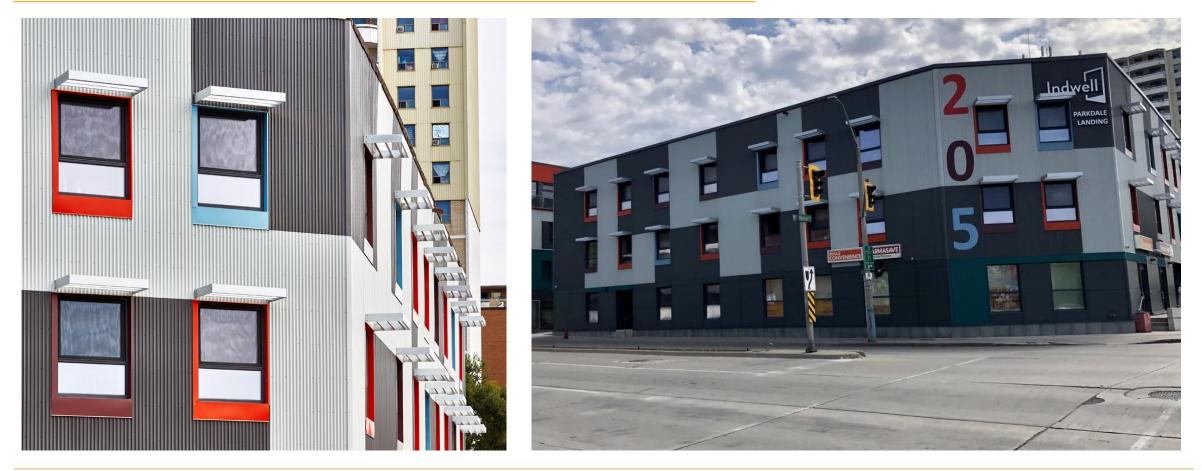
WALL ASSEMBLY 2

- 38MM DOUBLE LOCK STANDING SEAM METAL BREATHER MEMBRANE 16MM EXTERIOR GRADE PLYWOOD 200MM SEMI-RIGID MINERAL WOOL BOARD INSULATION ON FIBERGLASS THERMAL CLIPS - 19MM EXTERIOR GRADE PLYWOOD SHEATHING AIR/VAPOUR BARRIER MEMBRANE



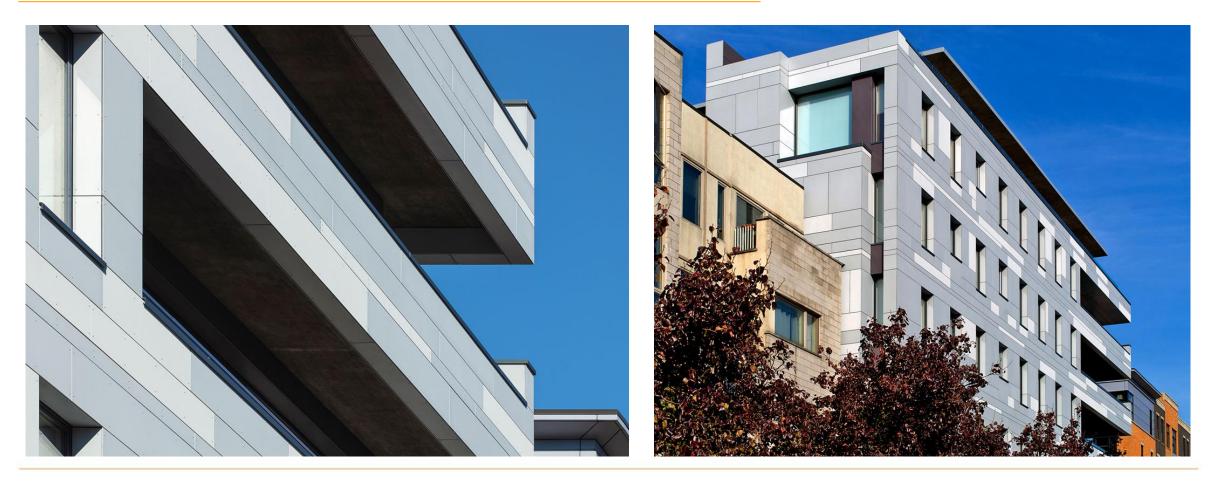
PARKDALE LANDING

- Hamilton, ON (2018)
- EnerPHit Passive House Certified
- Project Team
 - Architect Invizij Architects
 - Owner Indwell
 - Contractor Schilthuis Construction



PARKDALE LANDING

CANDELA LOFTS


- Hoboken, NJ (2019)
- Passive House Certified
- Project Team
 - Architect Nastasi Architects
 - Contractor Bijou Design Build
 - Passive House Consultant bldgtyp

CANDELA LOFTS

CANDELA LOFTS

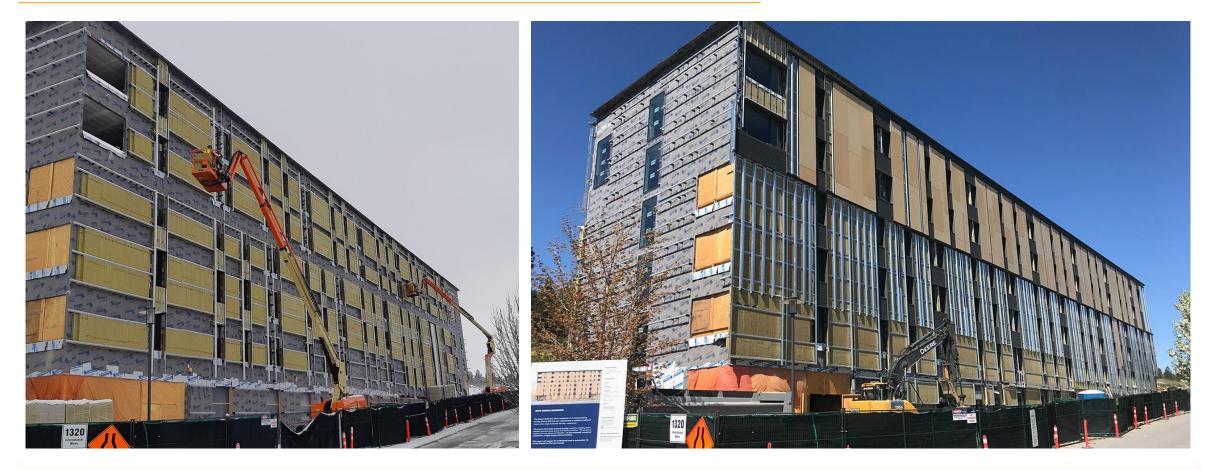
FINCH CAMBRIDGE

- Cambridge, MA (2020)
- Passive House Certified
- Project Team
 - Architect ICON Architecture
 - Developer Homer's Rehab Inc. (HRI)
 - General Contractor

 NEI General Contracting
 - Cladding Contractor
 - JKA construction

FINCH CAMBRIDGE

FINCH CAMBRIDGE



UBC OKANAGAN - SKEENA HOUSE

- Prince George, BC (2020)
- Passive House Certified
- Project Team
 - Architect PUBLIC
 - Developer University of British Columbia
 - Construction Management
 - Sawchuck Developments
 - Consultant RDH Building Science

UBC OKANAGAN - SKEENA HOUSE

UBC OKANAGAN - SKEENA HOUSE

KEY TAKE AWAYS

Recap of key topics from today's session

KEY TAKE AWAYS

CLADDING ATTACHMENTS HAVE HUGE IMPACT

Design | Material | Installation

Thermal bridging through cladding attachments can reduce insulation efficacy by up to 50%

EMERGING BUILDING CODES OFFER FLEXIBILITY

Prescriptive vs Energy Use

Emerging, more stringent Building Energy Performance Standards (BEPS) allow for design flexibility

PRODUCT PERFORMANCE IS A MATRIX

A Feature vs Overall Performance

Cladding attachment performance must be evaluated holistically and aligned with project goals

QUESTIONS & COMMENTS?

COMMON QUESTIONS

DETAILING SUPPORT:

- Do you have profile drawings and installation details available?
- Available for download (PDF & DWG)?

SPECIFYING SUPPORT:

- Do you have a 3-part spec?
- Do you have engineering reports available?
- Available for download (Word doc & PDFs)

INSTALLATION SUPPORT:

• Do you have installation videos & instructions available?

CASCADIA WINDOWS & DOORS

.

PE

CASCADIAWINDOWS.COM