

BUILDER: Blue Water Concepts PHOTO: Kristen McGaughey

CASCADIA – EDUCATIONAL PRESENTATION

AN ACTIVE APPROACH TO PASSIVE HOUSE WINDOWS

Understanding Passive House window modelling and impacts of real-world design details

WEBINAR ADMIN

WEBINAR TECHNICAL SUPPORT -

• Technical support is available for any issues during the webinar

CONTINUING EDUCATION CERTIFICATES -

- Will be automatically emailed after the presentation
- AIA & AIBC are automatically submitted (no need to self-report)
- All other association learning credits can be claimed via self-reporting

QUESTIONS -

• Feel free to post questions at any point during the presentation

AUDIO -

 We recommend using your computer audio to listen to the presentation. Calling into the presentation may incur long-distance charges from your phone provider. Remember to select vour audio source (headsets vs speakers) ▼ Audio. Sound Check _= ? Computer audio Phone call Transmit (Plantronics Savi 7xx-M) V Receive (Plantronics Savi 7xx-M) Talking: Liz Davis

AGENDA: WHAT ARE WE LOOKING AT TODAY?

- Intro to Cascadia Windows & Doors
- Impact of windows on building envelope performance
- Understanding the Passive House window standard
- Meeting the Passive House windows standard
- Window U-values in the real world
- Selecting Passive House windows
- Fiberglass for commercial Passive House projects

INTRO TO CASCADIA WINDOWS & DOORS

ES

INTRO TO CASCADIA WINDOWS & DOORS

COMMERCIAL & MULTI-FAMILY Windows & Window Wall Storefront Glazing

RESIDENTIAL Fixed & Operable Windows Swing & Sliding Doors

THERMAL SPACER Exterior Cladding Assemblies Low-sloped Roofs & Soffits

PASSIVE HOUSE PRODUCTS

ENERGY DEMAND & WINDOW IMPACTS

Understanding high-performance windows & what sets them apart

PASSIVE HOUSE – KEY TERMS

Image courtesy of Passive House Institute

Jervis Street Vancouver, BC

A HISTORY OF WINDOW PERFORMANCE

THERMAL PERFORMANCE

30-50%

of a building's heating & cooling energy is lost through windows

of a typical window areas is represented by the window frame

BY IMPROVING THE FRAME, YOU IMPROVE THE OVERALL PERFORMANCE OF THE ENTIRE WINDOW

DICTATING BETTER PERFORMANCE

Image courtesy of ecohome.net

CLARK ROAD Squamish, BC 2020

Image courtesy of Blue Water Concepts

Image courtesy of ACDF Architecture / IBI Group / Grosvenor Americas

Image courtesy of WKK Architects / IBI Group / Henson Developments

HOW MANY **PASSIVE HOUSE PROJECTS HAVE YOU BEEN A PART OF?**

POLL – PASSIVE HOUSE PROJECTS

HYGIENE

Image courtesy of Saga Magazine

HYGIENE

HYGIENE

 Θ_{si} - Θ_e **F**_{Rsi} $\Theta_i - \Theta_e$

HYGIENE

***COLD CLIMATE**

.t

THERMAL COMFORT & HYGIENE GO HAND-IN-HAND

	Climate zone	Hygiene criterion f _{Rsi=0.25 m²K/W} ≥	Component U-value ¹ [W/(m ² K)]	U-value installed [W/(m ² K)]	Reference glazing [W/(m ² K)]
	1 Arctic	0.80	0.40	0.45	0.35
	2 Cold	0.75	0.60	0.65	0.52
	3 Cool-temperate	0.70	0.80	0.85	0.70
	4 Warm-temperate	0.65	1.00	1.05	0.90
	5 Warm	0.55	1.20	1.25	1.10
	6 Hot	None	1.20	1.25	1.10
	7 Very hot	None	1.00	1.05	0.90

AIR TIGHTNESS

AIR TIGHTNESS

AIR LEAKAGE RESISTANCE

Air test data is indicated in the following table:

Property	Area m ² (ft ²)	Infiltration Rate	Exfiltration Rate	Compliance US (CAN)				
Overall Assembly @ 75 Pa	3.84 (41.28)	0.00 (0.00)	0.00 (0.00)	Pass (A3)				
Overall Assembly @ 300 Pa	3.84 (41.28)	0.00 (0.00)	0.00 (0.00)	Pass (A3)				
Allowable Leakage Rates								
Maximum allowable air leakag	1.5 L/s*m ² , 0.3 cfm/ft ²							
Maximum allowable air leakag	0.5 L/s*m ² , 0.1 cfm/ft ²							

The overall system **met** the US and Canadian performance requirements as reported above when evaluated under NAFS-08, NAFS-11, A440S1-09 and A440S1-17.

Image courtesy of Cascadia Windows & Doors

THERMAL PERFORMANCE

$$U_g = U$$
-value of the glass
 $A_g = Glazing$ surface area

 $U_g \times A_g$

THERMAL PERFORMANCE

 $U_g = U$ -value of the glass $A_g = Glazing$ surface area

 $U_f = U$ -value of the frame $A_f = W$ indow frame surface area U_g x A_g

U_f x A_f

THERMAL PERFORMANCE

THERMAL PERFORMANCE

 $\Psi_{\text{install}} \mathbf{X} \mathbf{L}_{\text{install}}$ $\Psi_{install}$ = Installed edge coefficient L_{install} = Installed edge length
THERMAL PERFORMANCE

THERMAL PERFORMANCE

SUMMARY OF GOOD WINDOW DESIGN

MEETING THE PASSIVE HOUSE STANDARD

Understanding ways to meet performance criteria in real projects

BUILDER: Blue Water Concepts PHOTO: Kristen McGaughey

WINDOWS & DOORS - DOUBLE GLAZED										
LOW-E OPTIONS	CENTER-OF-GLASS DATA			U _w (U-VALUE OF WINDOW) PER NFRC METHOD [W / M²-K]						
CARDINAL (90% ARGON FILL, UNO)	Ug	SHGC	VT	FIXED	CASEMENT	AWNING	TILT & TURN	HOPPER	SWING Door	SLIDING Door
STANDARD DOUBLE GLAZED (ONE LOW-E ON SURFACE #2 OR #2 / STAINLESS STEEL SPACER)										
180 (#3)	1.48	0.68	0.79	1.48	1.42	1.42	1.40	1.37	1.33	1.39
272 (#2)	1.42	0.41	0.72	1.42	1.36	1.39	1.36	1.34	1.29	1.35
270 (#2)	1.42	0.37	0.70	1.42	1.36	1.38	1.35	1.34	1.28	1.35
366 (#2)	1.36	0.27	0.65	1.36	1.36	1.36	1.33	1.32	1.26	1.32
452 (#2)	1.36	0.22	0.51	1.36	1.36	-	-	-	1.28	1.32
340 (#2)	1.36	0.18	0.39	1.42	1.36	1.37	1.34	1.33	1.27	1.33

PASSIVE HOUSE MODELLING

HOW DOES PHPP MODEL A WINDOW?

- 1. Area for heat loss A_w, m²
- 2. Area performance U_w , W/(m²K)
 - Glass (U_g and Ψ_g included)
 - Frame
 - Installation

MODELLING COMPLEX WINDOWS

MODELLING COMPLEX WINDOWS

Window 03_A.1 : option 1 vertically coupled, 2 operables

- 1 sash to frame, Uf = 0.971, .105m
- 2 sash mullion sash, Uf = 1.013, 0.191m
- 3 sash to mullion, Uf = 0.884, 0.143m
- 4 fixed frame, Uf = 0.812, 0.058m
- 5 fixed mullion, Uf = 0.809, .099m

Window 03_A.1 : option 2 - vertically coupled, 1 operable 1 - sash to frame, Uf = 0.971, .105m 3 - sash to mullion, Uf = 0.884, 0.143m 4 - fixed frame, Uf = 0.812, 0.058m 5 - fixed mullion, coupler, Uf = 0.809, .099m 6 - fixed coupler to sash, Uf = 0.898, 0.145m 7 - fixed coupler to sash, Uf = 0.898, 0.145m

ADDITIONAL PRODUCT PHI INFORMATION

U-VALUES IN THE REAL WORLD

Passive House project examples & the variety of window configurations used to achieve certification

GASTOWN CHILD CARE CENTRE

- Vancouver, BC (new construction)
- PH outswing windows
- PH certified commercial doors w/ ADA thresholds
- Triple glazed windows (Three Low-E 366 / 180 / i89)

Images courtesy of Acton Ostry Architects & Rikur Energy

KEN SOBLE TOWER

- Hamilton, ON (EnerPHit)
- Non-combustible construction
- PH certified, inswing windows
- Triple glazed windows (Three Low-E 270 / 180 / i89)
- 'Juliet Balcony' attached directly to the windows

Images courtesy of ERA Architects

825 PACIFIC

- Vancouver, BC (new construction)
- PH certified, inswing windows
- **PH certified commercial doors** w/ ADA thresholds
- Triple glazed windows (Two Low-E 366 / 180)

Images courtesy of ACDF Architecture / IBI Group / Grosvenor Americas

UVIC STUDENT HOUSING

- Victoria, BC (new construction)
- Non-combustible construction
- PH outswing windows
- Triple glazed windows (Two Low-E 270 / 180)

Images courtesy of Province of BC

SELECTING A PASSIVE HOUSE WINDOW

Passive House project examples & the variety of window configurations used to achieve certification

TYPICALLY, WHAT ARE THE TOP 3 CHARACTERISTICS YOU LOOK FOR IN WINDOWS?

FRAME TYPES & APPLICATIONS

ALUMINUM

PHOTO CREDIT: NEUFFER WINDOWS

PHOTO CREDIT: EUROLINE WINDOWS

PHOTO CREDIT: CASCADIA WINDOWS & DOORS

PHOTO CREDIT: GLO EUROPEAN WINDOWS

FRAME TYPES & APPLICATIONS

WHAT ARE YOUR DESIGN CRITERIA?

CONSIDERATIONS WHEN SELECTING PH WINDOW TYPE?

PHI/PHIUS CERTIFIED THERMAL PERFORMANCE LARGE WINDOW SIZE LIFETIME STRUCTURAL STRENGTH FLEXIBILITY CURTAIN/WINDOW WALL WEATHER RESISTANCE COMBUSTIBILITY LIFECYCLE COST

THERMAL CONDUCTIVITY (W/MK)

MATERIAL	MODULUS OF ELASTICITY (GPa)
Steel	200
Aluminum	69
Fiberglass (polyester resin)	24
Wood, various	7 - 14
PVC/Vinyl	2.4 - 4.1

Imagine a theoretical extrusion.....

ALUMINUM	FIBERGLASS	WOOD	VINYL/PVC

THERMAL EXPANSION COEFFICIENT - 10-⁶M/(M°C)

Neutral

HIGH-PERFORMANCE CHARACTERISTICS

THERMAL EXPANSION COEFFICIENT - 10-⁶M/(M°C)

HIGH-PERFORMANCE CHARACTERISTICS

THERMAL EXPANSION COEFFICIENT - 10-⁶M/(M°C)

COMMERCIAL PASSIVE HOUSE PROJECTS

How commercial building requirements impact Passive House window selection. VIRAL EXCLUSION AND ADDRESS

FIRST, THERE WAS CURTAIN WALL

PHOTO CREDIT: TORO ALUMINUM

PHOTO CREDIT: TORO ALUMINUM

PHOTO CREDIT: TORO ALUMINUM

Image courtesy of Passive Design Solutions

N

Image courtesy of Transit City Condos

THEN CAME WINDOW WALL AS A CHEAPER ALTERNATIVE

PHOTO CREDIT: TORO ALUMINUM

PHOTO CREDIT: TORO ALUMINUM

PHOTO CREDIT: TORO ALUMINUM

THEN FIBERGLASS WINDOW WALL WAS INVENTED

MORE EFFICIENT & COMFORTABLE ALLOW ANY BUILDING TO USE FIBERGLASS

ACHIEVING "COMMERCIAL GRADE" AND PHI CERTIFIED PERFORMANCE

WHAT HAPPENS IN A PMU?

- Large format (full height)
- Withstand high +/- pressure loads with low air leakage
- Withstand wind driven rain with no water leaks
- Withstand extreme temperature ranges, resist condensation
- Withstand building movement, large deflections during service life as well as seismic event
- Extreme hardware durability
- Combustibility
- All of this and maintain air and water tightness, operability and thermal performance!

WINDOWS HAVE HUGE IMPACT

Type | Location | Installation

Often the weakest link in a building's envelope, a little extra attention on windows can have large overall impact

PAY ATTENTION TO PRODUCT DETAILS

Material | Modeled vs Real-World

Ensure you're verifying general product details and performance within the context of your project

PASSIVE HOUSE FOR ALL BUILDINGS

Residential | Multi-Family | High-Rise

Building to Passive House standards offers significant environmental and financial incentives for nearly all stakeholders

BUILDER: Blue Water Concepts PHOTO: Kristen McGaughey

